やさしい中学理科 7-1 チェック問題 氏名

- (1) 電流が流れる道筋のことを[]という。
- (2) 電流は[+極から-極 / -極から+極]へと流れる。
- (3) 電子は[① プラス / マイナス]の力をもつので、[② +極 / -極]へと引き寄せられる。
- (4) 下の表の①~⑥に電気用図記号を描こう。

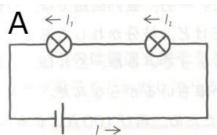
p.ib.35	電源	電球	電流計	電圧計	スイッチ	電気抵抗 (電熱線)	接続する
電気用図 記号	1	2	3	4	5	6	+

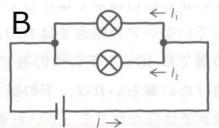
(5) 電流の通り道が | 本だけの回路を[① 回路]といい、通り道 が途中で分かれて 2 本以上ある回路を[② 回路]という。

A B B

(6) 右の図 A は[① 回路]であり、図 B は[② 回路]である。

(1) 回路	(2) +極から-極
(3)① マイナス	(3)② +極

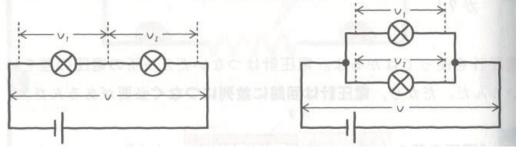

(4)(1)~6


Park	電源	電球	電流計	電圧計	スイッチ	電気抵抗 (電熱線)	接続する
電気用図 記号	長い線が中極		——————————————————————————————————————				+

(5)① 直列回路	(5)② 並列回路
(6)① 直列回路	(6)② 並列回路

- (1) 電流の大きさは[]で表される。
- (2) IA=[mA]である。
- (3) 電流は[①]で計測し、回路に対して[② 直列 / 並列]につなぐ。
- (4) 電流計をつなぐ時は、いちばん[大きな / 小さな]電流をはかる部分からつなぐ。
- (5) 図 A では[① $I=I_1=I_2$ / $I=I_1+I_2$]の関係が成り立ち、図 B では[② $I=I_1=I_2$ / $I=I_1+I_2$]の関係

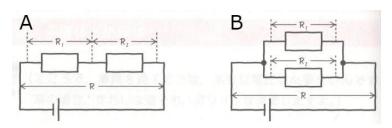
が成り立つ。



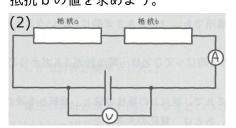
(I) アンペア(A)	(2) I 000mA
(3)① 電流計	(3)② 直列
(4) 大きな	$(5) \bigcirc I = I_1 = I_2$
(5) ② $I = I_1 + I_2$	

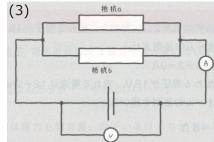
やさしい中学理科 7-3 チェック問題 氏名

- (1) 電圧の大きさは[]で表される。
- (2) 電圧は[①]で計測し、回路に対して[② 直列 / 並列]につなぐ。
- (3) 電圧系をつなぐ時は、いちばん[大きな / 小さな]電圧をはかる部分からつなぐ。
- (4) 図 A では[① $V = V_1 = V_2 / V = V_1 + V_2$]の関係が成り立ち、図 B では[② $V = V_1 = V_2 / V = V_1 + V_2$] の関係が成り立つ。


(I) ボルト(V)	(2)① 電圧計
(2)② 並列	(3) 大きな
(4)	(4) ② $V = V_1 = V_2$

やさしい中学理科 7-4 チェック問題 氏名


- (I) 電流の流れにくさを[①]という。その単位は[②]である。
- (2) 電 $\hat{\mathbf{E}}$ V、電流 I、抵抗R の関係を表すオームの装削は[① V =]という式である。これを変形すれば、 [② I =]、[③ R =]とわかる。
- (3) 電気抵抗が小さく、電流を通しやすい物質を[①]という。電気抵抗が大きく、電流を通しにくい物質を[②]という。それらの間くらいの電気抵抗をもつ物質を[③]という。


(1)① 電気抵抗	(1)② オーム(Ω)
(2) ① $V = I \times R$	$(2) \textcircled{2} I = \frac{V}{R}$
$(2) \ \ R = \frac{\mathit{V}}{\mathit{I}}$	(3)① 導体
(3)② 不導体(絶縁体)	(3)③ 半導体

- (I) 図 A では[① R =]の関係が成り立ち、図 B では[② $\frac{1}{R}$ =]の関係が成り立つ。特に並列回路で
 - は、全体の抵抗は各部分の抵抗より[③ 大きく / 小さく]なる。

- (2) 下図の回路において、電圧計の値が 24V、電流計の値が 6A を示していた。抵抗 α の値が 3Ω のとき、抵抗 α の値を求めよう。
- (3) 下図の回路において、電圧計の値が I 2V、電流計の値が I 0A を示していた。抵抗 α の値が 3 Ω のとき、 抵抗 b の値を求めよう。(3) 極抗α

$(1) \bigcirc R = R_1 + R_2$	(1)
(1)③ 小さく	(2) Ι Ω
(3) 2Ω	

(2)の解き方

全体の抵抗は、24V÷6A=4Ω。

直列回路だから、 $R=R_1+R_2$ が成り立つので、 $4\Omega=3\Omega+R_2$ よって $R_2=4\Omega-3\Omega=1\Omega$

(3)の解き方

並列回路だから、どの部分でも電圧は同じなので、抵抗 a における電圧も 12V。

よって抵抗 α における電流は、I2V÷3Ω=4A とわかる。

並列回路だから、全体の電流 IOA は、抵抗 a における電流 4A と抵抗 b における電流の和なので、

抵抗 b における電流は IOA-4A=6A とわかる。

並列回路だから、どの部分でも電圧は同じなので、抵抗 b における電圧も 12V だから、

抵抗 b における抵抗は、12V÷6A=2Ω

(3)の別解

まず全体の抵抗は、I2V÷IOA= $\frac{12}{10}=\frac{6}{5}\Omega$ 。並列回路だから、 $\frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}$ が成り立つので、 $\frac{5}{6}=\frac{1}{3}+\frac{1}{R_2}$

よって、 $\frac{1}{R_2} = \frac{5}{6} - \frac{1}{3}$ つまり、 $\frac{1}{R_2} = \frac{1}{2}$ 以上より、 $R_2 = 2\Omega$

やさしい中学理科 7-6 チェック問題 氏名

- (I) I 秒あたりに使われる電気エネルギーの量を[①]という。その単位は[②]である。求める式は[③]である。
- (2) ある電熱線に 4V の電圧を加えたとき、9A の電流が流れた。この電熱線の電力は[W]である。
- (3) 電気器具などで消費された電気エネルギーの量を[①]という。その単位は[②]である。求める式は[③]である。
- (4) ある電熱線に 3V の電圧を加えたとき、4A の電流が流れた。この電熱線に 5 秒間電流を流した。このときの電力量は[J]である。
- (5) 水 $\lg \in \mathbb{C}^{\mathbb{C}} \stackrel{\iota}{\to} \stackrel{\iota}$

(1)① 電力	(1)② W(ワット)
(I)③ 電力 W=電圧 V×電流 A	$(2) 4V \times 9A = 36W$
(3)① 電力量	(3)② J(ジュール)
(3)③ 電力量 J=電力 W×秒 s	(4) 3V×4A=I2W なので、I2W×5 秒=60J
(5)① 4.2J×100g=420J	(5)② 420J×20°C=8400J

やさしい中学理科 7-7 チェック問題 氏名

- (I) 種類のちがう物体と物体がこすれ合うと発生する電気を[]という。
- (2) 移動できるのは[プラス(+)/マイナス(-)]の電気である。
- (3) プラスの電気とマイナスの電気が近付くと[引き合う / 炭発する]。
- (4) プラスどうしの電気、またはマイナスどうしの電気が近付くと[引き合う / 反発する]。
- (5) $\hat{\mathbf{e}}^{n}$ には、「」の流れのことである。

(1) 静電気	(2) マイナス(-)
(3) 引き合う	(4) 反発する
(5) 電子	

やさしい中学理科 7-8 チェック問題 氏名

- (I) 電気が空間の中を移動する現象を[]という。
- (2) 気圧を低くした、気体がほとんどない状態の空間に電流が流れる現象を[]という。
- (3) 放電管の中で -極から + 極に流れる電子の流れを [①] という。これは [② +極 / -極] のある方へ 曲がろうとする。
- (4) 電子は、[① プラス(+) / マイナス(-)] の電気なので、電圧を加えると[② +極 / -極]のある方へ動き出す。
- (5) 電流とは電子の流れのことであるが、流れる向きは[① 同じ / 逆]で、電流は[②] +極から] を流れる。

(I) 放電	(2) 真空放電
(3)① 電子線(陰極線)	(3)② +極
(4)① マイナス(-)	(4)② +極
(5)① 逆	(5)② +極から-極